Thermoelectric properties of anisotropy-controlled p-type Bi-Te-Sb system via bulk mechanical alloying and shear extrusion

S. S. Kim, S. Yamamoto, T. Aizawa

Research output: Contribution to journalArticle

88 Citations (Scopus)


Shear extrusion processing with combination of bulk mechanical alloying is proposed to yield the p-type Bi-Te-Sb materials from elemental granules. It has a well-developed texture so as to improve the electrical conductivity and thermoelectric properties. The shear extrusion processing in the Bi 0.4Sb1.6Te3 and Bi0.5Sb 1.5Te3 alloy green compact improves the preferred orientation factor of anisotropic crystallographic structure: F = 0.63 for Bi0.4Sb1.6Te3 and F = 0.49 for Bi 0.5Sb1.5Te3, respectively. The electrical resistivity of Bi0.4Sb1.6Te3 is well-controlled to be 0.989×10-5Ωm, which is one-half of the hot-pressed specimen. Maximum power factor of Bi0.4Sb1.6Te 3 is achieved to 4.33×10-3W/mK2. The bending strength of the material produced is also improved to be 120MPa, six times larger than that for the zone-melt specimen.

Original languageEnglish
Pages (from-to)107-113
Number of pages7
JournalJournal of Alloys and Compounds
Issue number1-2
Publication statusPublished - 2004 Jul 28
Externally publishedYes



  • Anisotropy
  • Bismuth telluride
  • Orientation factor
  • Shear extrusion processing

ASJC Scopus subject areas

  • Metals and Alloys

Cite this