Tiny Two-Stage 1-GHz Time-Difference Amplifier without Input Time-Difference Limitation and Extreme Points

Atsushi Mamba, Masahiro Sasaki

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Conventional time-difference amplifiers (TDAs), which can improve the time-domain resolution, use capacitors and an external control circuit to make gain, control gain, and improve linearity. However, this configuration produces a limitation in the maximum operating frequency and high power consumption. This paper proposes and demonstrates a TDA for a variety of time-domain circuits. The proposed TDA consists of two circuits, including a modified SR latch circuit and gain control circuit (GCC). The linearity of this TDA is controlled by the GCC, which is a part of the amplifier, by only using the time-difference signals generated by the modified SR latch. This TDA is fabricated in the 0.18 J.1m CMOS process, and the core area occupies only 13 µm×14 µm. The measurement results show that the output time difference monotonically increases and has no extreme points for an entire clock period with a 1-GHz input clock. The gain of the flat region in the range of ±130 ps is 1.54 with a maximum gain error of less than 6.5%, and the power consumption is 2230 µW. The proposed TDA can be used for not only a time to digital converter, similar with conventional TDAs, but also circuits using the time domain, such as a high-speed comparators and time-difference adjustment methods.

Original languageEnglish
Title of host publicationICECS 2020 - 27th IEEE International Conference on Electronics, Circuits and Systems, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728160443
DOIs
Publication statusPublished - 2020 Nov 23
Event27th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2020 - Glasgow, United Kingdom
Duration: 2020 Nov 232020 Nov 25

Publication series

NameICECS 2020 - 27th IEEE International Conference on Electronics, Circuits and Systems, Proceedings

Conference

Conference27th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2020
CountryUnited Kingdom
CityGlasgow
Period20/11/2320/11/25

Keywords

  • Linearity
  • Metastability
  • No extreme point transfer function
  • Time domain
  • Time-difference amplifier

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Tiny Two-Stage 1-GHz Time-Difference Amplifier without Input Time-Difference Limitation and Extreme Points'. Together they form a unique fingerprint.

Cite this