Trinuclear copper(II) complex showing high selectivity for the hydrolysis of 2′-5′ over 3′-5′ for UpU and 3′-5′ over 2′-5′ for ApA ribonucleotides

Makoto Komiyama, Shinichiro Kina, Kazunari Matsumura, Jun Sumaoka, Suzanne Tobey, Vincent M. Lynch, Eric Anslyn

Research output: Contribution to journalArticle

72 Citations (Scopus)


The cooperative action of multiple Cu(II) nuclear centers is shown to be effective and selective in the hydrolysis of 2′-5′ and 3′-5′ ribonucleotides. Reported herein is the specific catalysis by two trinuclear Cu(II) complexes of L3A and L3B. Pseudo first-order kinetic studies reveal that the L3A trinuclear Cu(II) complex effects hydrolysis of Up(2′-5′)U with a rate constant of 28 × 10-4 min-1 and Up(3′-5′)U with a rate constant of 0.5 × 10-4 min-1. The hydrolyses of Ap(3′-5′)A and Ap(2′-5′)A proceed with rate constants of 24 × 10-4 min-1 and 0.5 × 10-4 min-1 respectively. The L3A trinuclear Cu(II) complex demonstrates high specificity for Up(2′-5′)U and Ap(3′-5′)A. Similar studies with the more rigid L3B trinuclear Cu(II) complex shows no selectivity and yields lower rate constants for hydrolysis. The selectivity observed with the L3A ligand is attributed to the geometry of the ligand-bound diribonucleotide which ultimately dictates the proximity of the attacking hydroxyl and the phosphoester to a Cu(II) center for activation and subsequent hydrolysis.

Original languageEnglish
Pages (from-to)13731-13736
Number of pages6
JournalJournal of the American Chemical Society
Issue number46
Publication statusPublished - 2002 Nov 20
Externally publishedYes


ASJC Scopus subject areas

  • Chemistry(all)

Cite this