Variation of c-axis correlation on vortex pinning by ab-plane non-superconducting layers in YBa2Cu3O7 films

Tomoya Horide, Takuto Murayama, Kaoru Takata, Kaname Matsumoto, Paolo Mele, Yutaka Yoshida, Yusuke Ichino, Satoshi Awaji

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


In YBa2Cu3O7 (YBCO) + BaSnO3 (BSO)/PrBa2Cu3O7 (PrBCO) multilayer films, behavior of vortices pinned by BSO nanorods was evaluated to discuss influence of ab-plane non-superconducting layers on c-axis correlated vortex pinning. Critical current density (Jc) and activation energy for thermally activated flux flow in magnetic field parallel to the c-axis were reduced by the PrBCO layers and a c-axis peak in an angular dependence of Jc became small, as YBCO + BSO layer thickness decreased or PrBCO layer thickness increased. Irreversibility temperature and trapping angle were not changed by the PrBCO layers for thick YBCO + BSO layers and thin PrBCO layers. This indicates that the ab-plane non-superconducting layers accelerated the vortex motion along the ab-plane without changing the vortex structure. Thin YBCO + BSO layers or thick PrBCO layers resulted in much more drastic degradation of the c-axis correlated vortex pinning due to two dimensional vortex nature or partially prevailed vortex structure, which decreased not only Jc and activation energy, but also irreversibility temperature and trapping angle. Thus, the c-axis correlation of vortex pinning is varied by addition of the ab-plane non-superconducting layers.

Original languageEnglish
Article number073903
JournalJournal of Applied Physics
Issue number7
Publication statusPublished - 2013 Aug 21
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy(all)


Dive into the research topics of 'Variation of c-axis correlation on vortex pinning by ab-plane non-superconducting layers in YBa2Cu3O7 films'. Together they form a unique fingerprint.

Cite this