TY - JOUR
T1 - Visualization of probiotic-mediated Ca2+ signaling in intestinal epithelial cells in vivo
AU - Adachi, Takahiro
AU - Kakuta, Shigeru
AU - Aihara, Yoshiko
AU - Kamiya, Tomonori
AU - Watanabe, Yohei
AU - Osakabe, Naomi
AU - Hazato, Naoki
AU - Miyawaki, Atsushi
AU - Yoshikawa, Soichiro
AU - Usami, Takako
AU - Karasuyama, Hajime
AU - Kimoto-Nira, Hiromi
AU - Hirayama, Kazuhiro
AU - Tsuji, Noriko M.
N1 - Publisher Copyright:
© 2016 Adachi, Kakuta, Aihara, Kamiya, Watanabe, Osakabe, Hazato, Miyawaki, Yoshikawa, Usami, Karasuyama, Kimoto-Nira, Hirayama and Tsuji.
PY - 2016
Y1 - 2016
N2 - Probiotics, such as lactic acid bacteria (LAB) and Bacillus subtilis var. natto, have been shown to modulate immune responses. It is important to understand how probiotic bacteria impact intestinal epithelial cells (IECs), because IECs are the first line of defense at the mucosal surface barrier and their activities substantially affect the gut microenvironment and immunity. However, to date, their precise mechanism remains unknown due to a lack of analytical systems available for live animal models. Recently, we generated a conditional Ca2+ biosensor Yellow Cameleon (YC3.60) transgenic mouse line and established 5D (x, y, z, time, and Ca2+) intravital imaging systems of lymphoid tissues including those in Peyer's patches and bone marrow. In the present study, we further advance our intravital imaging system for intestinal tracts to visualize IEC responses against orally administrated food compounds in real time. Using this system,heat-killed B. subtilis natto, a probiotic TTCC012 strain, is shown to directly induce Ca2+ signaling in IECs in mice housed under specific pathogen-free conditions. In contrast, this activation is not observed in the Lactococcus lactis strain C60; however, when we generate germ-free YC3.60 mice and observe the LAB stimulation of IECs in the absence of gut microbiota, C60 is capable of inducing Ca2+ signaling. This is the first study to successfully visualize the direct effect of probiotics on IECs in live animals. These data strongly suggest that probiotic strains stimulate IECs under physiological conditions and that their activity is affected by the microenvironment of the small intestine, such as commensal bacteria.
AB - Probiotics, such as lactic acid bacteria (LAB) and Bacillus subtilis var. natto, have been shown to modulate immune responses. It is important to understand how probiotic bacteria impact intestinal epithelial cells (IECs), because IECs are the first line of defense at the mucosal surface barrier and their activities substantially affect the gut microenvironment and immunity. However, to date, their precise mechanism remains unknown due to a lack of analytical systems available for live animal models. Recently, we generated a conditional Ca2+ biosensor Yellow Cameleon (YC3.60) transgenic mouse line and established 5D (x, y, z, time, and Ca2+) intravital imaging systems of lymphoid tissues including those in Peyer's patches and bone marrow. In the present study, we further advance our intravital imaging system for intestinal tracts to visualize IEC responses against orally administrated food compounds in real time. Using this system,heat-killed B. subtilis natto, a probiotic TTCC012 strain, is shown to directly induce Ca2+ signaling in IECs in mice housed under specific pathogen-free conditions. In contrast, this activation is not observed in the Lactococcus lactis strain C60; however, when we generate germ-free YC3.60 mice and observe the LAB stimulation of IECs in the absence of gut microbiota, C60 is capable of inducing Ca2+ signaling. This is the first study to successfully visualize the direct effect of probiotics on IECs in live animals. These data strongly suggest that probiotic strains stimulate IECs under physiological conditions and that their activity is affected by the microenvironment of the small intestine, such as commensal bacteria.
KW - Bacillus subtilis
KW - Ca signaling
KW - Germ-free mouse
KW - Intestinal epithelial cell
KW - Intravital imaging
KW - Lactococcus
KW - Probiotic
KW - Small intestine
UR - http://www.scopus.com/inward/record.url?scp=85009359409&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85009359409&partnerID=8YFLogxK
U2 - 10.3389/fimmu.2016.00601
DO - 10.3389/fimmu.2016.00601
M3 - Article
AN - SCOPUS:85009359409
SN - 1664-3224
VL - 7
JO - Frontiers in Immunology
JF - Frontiers in Immunology
IS - DEC
M1 - 601
ER -