Wide-angle foveation for all-purpose use

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

This paper proposes a model of a wide-angle space-variant image that provides a guide for designing a fovea sensor. First, an advanced wide-angle foveated (AdWAF) model is formulated, taking all-purpose use into account. This proposed model uses both Cartesian (linear) coordinates and logarithmic coordinates in both planar projection and spherical projection. Thus, this model divides its wide-angle field of view into four areas, such that it can represent an image by various types of lenses, flexibly. The first simulation compares with other lens models, in terms of image height and resolution. The result shows that the AdWAF model can reduce image data by 13.5%, compared to a log-polar lens model, both having the same resolution in the central field of view. The AdWAF image is remapped from an actual input image by the prototype fovea lens, a wide-angle foveated (WAF) lens, using the proposed model. The second simulation compares with other foveation models used for the existing log-polar chip and vision system. The third simulation estimates a scale-invariant property by comparing with the existing fovea lens and the log-polar lens. The AdWAF model gives its planar logarithmic part a complete scale-invariant property, while the fovea lens has 7.6% error at most in its spherical logarithmic part. The fourth simulation computes optical flow in order to examine the unidirectional property when the fovea sensor by the AdWAF model moves, compared to the pinhole camera. The result obtained by using a concept of a virtual cylindrical screen indicates that the proposed model has advantages in terms of computation and application of the optical flow when the fovea sensor moves forward.

Original languageEnglish
Pages (from-to)587-597
Number of pages11
JournalIEEE/ASME Transactions on Mechatronics
Volume13
Issue number5
DOIs
Publication statusPublished - 2008
Externally publishedYes

Fingerprint

Lenses
Optical flows
Sensors
Pinhole cameras

Keywords

  • Active sensing
  • All-purpose use
  • Biomimetics
  • Fovea sensor
  • Image processing
  • Wide-angle foveation (WAF)

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Control and Systems Engineering
  • Computer Science Applications

Cite this

Wide-angle foveation for all-purpose use. / Shimizu, Sota.

In: IEEE/ASME Transactions on Mechatronics, Vol. 13, No. 5, 2008, p. 587-597.

Research output: Contribution to journalArticle

@article{1a8df19f1fa04c98a4954a6bef6ec6eb,
title = "Wide-angle foveation for all-purpose use",
abstract = "This paper proposes a model of a wide-angle space-variant image that provides a guide for designing a fovea sensor. First, an advanced wide-angle foveated (AdWAF) model is formulated, taking all-purpose use into account. This proposed model uses both Cartesian (linear) coordinates and logarithmic coordinates in both planar projection and spherical projection. Thus, this model divides its wide-angle field of view into four areas, such that it can represent an image by various types of lenses, flexibly. The first simulation compares with other lens models, in terms of image height and resolution. The result shows that the AdWAF model can reduce image data by 13.5{\%}, compared to a log-polar lens model, both having the same resolution in the central field of view. The AdWAF image is remapped from an actual input image by the prototype fovea lens, a wide-angle foveated (WAF) lens, using the proposed model. The second simulation compares with other foveation models used for the existing log-polar chip and vision system. The third simulation estimates a scale-invariant property by comparing with the existing fovea lens and the log-polar lens. The AdWAF model gives its planar logarithmic part a complete scale-invariant property, while the fovea lens has 7.6{\%} error at most in its spherical logarithmic part. The fourth simulation computes optical flow in order to examine the unidirectional property when the fovea sensor by the AdWAF model moves, compared to the pinhole camera. The result obtained by using a concept of a virtual cylindrical screen indicates that the proposed model has advantages in terms of computation and application of the optical flow when the fovea sensor moves forward.",
keywords = "Active sensing, All-purpose use, Biomimetics, Fovea sensor, Image processing, Wide-angle foveation (WAF)",
author = "Sota Shimizu",
year = "2008",
doi = "10.1109/TMECH.2008.2002884",
language = "English",
volume = "13",
pages = "587--597",
journal = "IEEE/ASME Transactions on Mechatronics",
issn = "1083-4435",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
number = "5",

}

TY - JOUR

T1 - Wide-angle foveation for all-purpose use

AU - Shimizu, Sota

PY - 2008

Y1 - 2008

N2 - This paper proposes a model of a wide-angle space-variant image that provides a guide for designing a fovea sensor. First, an advanced wide-angle foveated (AdWAF) model is formulated, taking all-purpose use into account. This proposed model uses both Cartesian (linear) coordinates and logarithmic coordinates in both planar projection and spherical projection. Thus, this model divides its wide-angle field of view into four areas, such that it can represent an image by various types of lenses, flexibly. The first simulation compares with other lens models, in terms of image height and resolution. The result shows that the AdWAF model can reduce image data by 13.5%, compared to a log-polar lens model, both having the same resolution in the central field of view. The AdWAF image is remapped from an actual input image by the prototype fovea lens, a wide-angle foveated (WAF) lens, using the proposed model. The second simulation compares with other foveation models used for the existing log-polar chip and vision system. The third simulation estimates a scale-invariant property by comparing with the existing fovea lens and the log-polar lens. The AdWAF model gives its planar logarithmic part a complete scale-invariant property, while the fovea lens has 7.6% error at most in its spherical logarithmic part. The fourth simulation computes optical flow in order to examine the unidirectional property when the fovea sensor by the AdWAF model moves, compared to the pinhole camera. The result obtained by using a concept of a virtual cylindrical screen indicates that the proposed model has advantages in terms of computation and application of the optical flow when the fovea sensor moves forward.

AB - This paper proposes a model of a wide-angle space-variant image that provides a guide for designing a fovea sensor. First, an advanced wide-angle foveated (AdWAF) model is formulated, taking all-purpose use into account. This proposed model uses both Cartesian (linear) coordinates and logarithmic coordinates in both planar projection and spherical projection. Thus, this model divides its wide-angle field of view into four areas, such that it can represent an image by various types of lenses, flexibly. The first simulation compares with other lens models, in terms of image height and resolution. The result shows that the AdWAF model can reduce image data by 13.5%, compared to a log-polar lens model, both having the same resolution in the central field of view. The AdWAF image is remapped from an actual input image by the prototype fovea lens, a wide-angle foveated (WAF) lens, using the proposed model. The second simulation compares with other foveation models used for the existing log-polar chip and vision system. The third simulation estimates a scale-invariant property by comparing with the existing fovea lens and the log-polar lens. The AdWAF model gives its planar logarithmic part a complete scale-invariant property, while the fovea lens has 7.6% error at most in its spherical logarithmic part. The fourth simulation computes optical flow in order to examine the unidirectional property when the fovea sensor by the AdWAF model moves, compared to the pinhole camera. The result obtained by using a concept of a virtual cylindrical screen indicates that the proposed model has advantages in terms of computation and application of the optical flow when the fovea sensor moves forward.

KW - Active sensing

KW - All-purpose use

KW - Biomimetics

KW - Fovea sensor

KW - Image processing

KW - Wide-angle foveation (WAF)

UR - http://www.scopus.com/inward/record.url?scp=54349122073&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=54349122073&partnerID=8YFLogxK

U2 - 10.1109/TMECH.2008.2002884

DO - 10.1109/TMECH.2008.2002884

M3 - Article

VL - 13

SP - 587

EP - 597

JO - IEEE/ASME Transactions on Mechatronics

JF - IEEE/ASME Transactions on Mechatronics

SN - 1083-4435

IS - 5

ER -