## 抄録

In this paper, we study ℒ_{2} gain property for a class of switched systems which are composed of both continuous-time LTI subsystems and discrete-time LTI subsystems. Under the assumption that all subsystems are Hurwitz/Schur stable and have the ℒ_{2} gain less than 7, we discuss the ℒ_{2} gain that the switched system could achieve. First, we consider the case where a common Lyapunov function exists for all subsystems in ℒ_{2} sense, and show that the switched system has the ℒ_{2} gain less than the same level 7 under arbitrary switching. As an example in this case, we analyze switched symmetric systems and derive the common Lyapunov function clearly. Next, we use a piecewise Lyapunov function approach to study the case where no common Lyapunov function exists in ℒ_{2} sense, and show that the switched system achieves an ultimate (or weighted) ℒ_{2} gain under an average dwell time scheme.

本文言語 | English |
---|---|

ページ | 2483-2488 |

ページ数 | 6 |

出版ステータス | Published - 2004 |

外部発表 | はい |

イベント | SICE Annual Conference 2004 - Sapporo, Japan 継続期間: 2004 8月 4 → 2004 8月 6 |

### Conference

Conference | SICE Annual Conference 2004 |
---|---|

国/地域 | Japan |

City | Sapporo |

Period | 04/8/4 → 04/8/6 |

## ASJC Scopus subject areas

- 制御およびシステム工学
- コンピュータ サイエンスの応用
- 電子工学および電気工学

## フィンガープリント

「ℒ_{2}gain analysis for switched systems with continuous-time and discrete-time subsystems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。