A closure concept in factor-critical graphs

研究成果: Article

2 引用 (Scopus)

抜粋

A graph G is called n-factor-critical if the removal of every set of n vertices results in a graph with a 1-factor. We prove the following theorem: Let G be a graph and let x be a locally n-connected vertex. Let {μ, v} be a pair of vertices in V(G) - {x} such that uv E(G), x ∈ NG(u) ∩ NG(v), and NG(x) ⊂ NG(u) ∪ NG(v) ∪ {u,v}. Then G is n-factor-critical if and only if G + uv is n-factor-critical.

元の言語English
ページ(範囲)319-324
ページ数6
ジャーナルDiscrete Mathematics
259
発行部数1-3
DOI
出版物ステータスPublished - 2002 12 28

    フィンガープリント

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics

これを引用