A degree condition for the existence of 1-factors in graphs or their complements

Kiyoshi Ando, Atsushi Kaneko, Tsuyoshi Nishimura

研究成果: Article

1 引用 (Scopus)

抜粋

We study conditions for a simple graph G or its complement Ḡ to have a 1-factor. Let G be a graph of even order n and denote by ir(G) the difference between the maximum degree and the minimum degree of G. We prove that if both G and Ḡ are connected and ir(G) ≤ [1/4n + 1], then either G or Ḡ has a 1-factor with the inequality being sharp.

元の言語English
ページ(範囲)1-8
ページ数8
ジャーナルDiscrete Mathematics
203
発行部数1-3
DOI
出版物ステータスPublished - 1999 5 28

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics

フィンガープリント A degree condition for the existence of 1-factors in graphs or their complements' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用