A fast blow-Up solution and degenerate pinching arising in an anisotropic crystalline motion

Tetsuya Ishiwata, Shigetoshi Yazaki

研究成果査読

抄録

The asymptotic behavior of solutions to an anisotropic crystalline motion is investigated. In this motion, a solution polygon changes the shape by a power of crystalline curvature in its normal direction and develops singularity in a finite time. At the final time, two types of singularity appear: one is a single point-extinction and the other is degenerate pinching. We will discuss the latter case of singularity and show the exact blow-up rate for a fast blow-up or a type 2 blow-up solution which arises in an equivalent blow-up problem.

本文言語English
ページ(範囲)2069-2090
ページ数22
ジャーナルDiscrete and Continuous Dynamical Systems- Series A
34
5
DOI
出版ステータスPublished - 2014 5

ASJC Scopus subject areas

  • 分析
  • 離散数学と組合せ数学
  • 応用数学

フィンガープリント

「A fast blow-Up solution and degenerate pinching arising in an anisotropic crystalline motion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル