A k-tree containing specified vertices

Shuya Chiba, Ryota Matsubara, Kenta Ozeki, Masao Tsugaki

研究成果: Article査読

1 被引用数 (Scopus)

抄録

A k-tree is a tree with maximum degree at most k. In this paper, we give sufficient conditions for a graph to have a k-tree containing specified vertices. Let k be an integer with k ≥ 3. Let G be a graph of order n and let S ⊆ V(G) with κ(S) ≥ 1. Suppose that for every l ≥ κ(S), there exists an integer t such that l≤t≤(k-1)l+2-{down left corner}k/l-1 and the degree sum of any t independent vertices of S is at least n + tl - kl - 1. Then G has a k-tree containing S. We also show some new results on a spanning k-tree as corollaries of the above theorem.

本文言語English
ページ(範囲)187-205
ページ数19
ジャーナルGraphs and Combinatorics
26
2
DOI
出版ステータスPublished - 2010 3
外部発表はい

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics

フィンガープリント 「A k-tree containing specified vertices」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル