A maximizing model of bezdek-like spherical fuzzy c-means

研究成果: Article査読

11 被引用数 (Scopus)

抄録

In this study, a maximizing model of Bezdek-like spherical fuzzy c-means clustering is proposed, which is based on the regularization of the maximizing model of spherical hard c-means. Such a maximizing model was unclear in Bezdek-like method, whereas other types of methods have been investigated well both in minimizing and maximizing model. Using theoretical analysis and numerical experiments, the classifi-cation rule of the proposed method is shown. Using numerical examples, the proposed method is shown to be valid for document clustering, because documents are represented as spherical data via term documentinverse document frequency weighting and normalization processing.

本文言語English
ページ(範囲)662-669
ページ数8
ジャーナルJournal of Advanced Computational Intelligence and Intelligent Informatics
19
5
DOI
出版ステータスPublished - 2015 9月 1

ASJC Scopus subject areas

  • 人間とコンピュータの相互作用
  • コンピュータ ビジョンおよびパターン認識
  • 人工知能

フィンガープリント

「A maximizing model of bezdek-like spherical fuzzy c-means」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル