A maximizing model of spherical Bezdek-type fuzzy multi-medoids clustering

研究成果: Article査読

10 被引用数 (Scopus)

抄録

This paper proposes three modifications for the maximizing model of spherical Bezdek-type fuzzy c-means clustering (msbFCM). First, we use multi-medoids instead of centroids (msbFMMdd), which is similar to modifying fuzzy c-means to fuzzy multi-medoids. Second, we kernelize msbFMMdd (K-msbFMMdd). msbFMMdd can only be applied to objects in the first quadrant of the unit hypersphere, whereas its kernelized form can be applied to a wider class of objects. The third modification is a spectral clustering approach to K-msbFMMdd using a certain assumption. This approach improves the local convergence problem in the original algorithm. Numerical examples demonstrate that the proposed methods can produce good results for clusters with nonlinear borders when an adequate parameter value is selected.

本文言語English
ページ(範囲)738-746
ページ数9
ジャーナルJournal of Advanced Computational Intelligence and Intelligent Informatics
19
6
DOI
出版ステータスPublished - 2015

ASJC Scopus subject areas

  • 人間とコンピュータの相互作用
  • コンピュータ ビジョンおよびパターン認識
  • 人工知能

引用スタイル