A new classification of neuron models for random inputs on bifurcation structures

Ryosuke Hosaka, Tohru Ikeguchi, Yutaka Sakai, Shuji Yoshizawa

研究成果: Conference contribution

抄録

Cortical regularly spiking neurons are classified into two classes, Class I and Class II, by their firing frequencies. We investigated the statistical characteristics of spike sequences of Class I and II neurons stimulated by uncorrelated fluctuations by two interspike interval statistics; coefficient of variation and coefficient of skewness. As a result, the interspike interval statistics of Class I and II neurons are different. Moreover, even if the neurons belong to the same class, if the precise bifurcation structures of the neurons are different, the statistics exhibit different characteristics. The results indicate insufficiency to classify neurons by the firing frequencies and necessity to classify neurons by the precise bifurcation structures.

本文言語English
ホスト出版物のタイトルISCAS 2006
ホスト出版物のサブタイトル2006 IEEE International Symposium on Circuits and Systems, Proceedings
ページ2741-2744
ページ数4
出版ステータスPublished - 2006
外部発表はい
イベントISCAS 2006: 2006 IEEE International Symposium on Circuits and Systems - Kos, Greece
継続期間: 2006 5月 212006 5月 24

出版物シリーズ

名前Proceedings - IEEE International Symposium on Circuits and Systems
ISSN(印刷版)0271-4310

Conference

ConferenceISCAS 2006: 2006 IEEE International Symposium on Circuits and Systems
国/地域Greece
CityKos
Period06/5/2106/5/24

ASJC Scopus subject areas

  • 電子工学および電気工学

フィンガープリント

「A new classification of neuron models for random inputs on bifurcation structures」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル