抄録
A graph G having a 1-factor is called n-extendible if every matching of size n extends to a 1-factor. Let G be a 2-connected graph of order 2p. Let r ≥ 0 and n > 0 be integers such that p - r ≥ n + 1. It is shown that if G\S is n-extendible for every connected subgraph S of order 2r for which G\S is connected, then G is n-extendible.
本文言語 | English |
---|---|
ページ(範囲) | 79-83 |
ページ数 | 5 |
ジャーナル | Graphs and Combinatorics |
巻 | 13 |
号 | 1 |
DOI | |
出版ステータス | Published - 1997 1月 1 |
ASJC Scopus subject areas
- 理論的コンピュータサイエンス
- 離散数学と組合せ数学