A new symmetric expression of Weyl ordering

Kazuyuki Fujii, Tatsuo Suzuki

研究成果: Article査読

7 被引用数 (Scopus)

抄録

For the creation operator a† and the annihilation operator a of a harmonic oscillator, we consider Weyl ordering expression of (a†a) n and obtain a new symmetric expression of Weyl ordering w.r.t. a†a ≡ N and aa† = N + 1 where N is the number operator. Moreover, we interpret intertwining formulas of various orderings in view of the difference theory. Then we find that the noncommutative parameter corresponds to the increment of the difference operator w.r.t. variable N. Therefore, quantum (noncommutative) calculations of harmonic oscillators are done by classical (commutative) ones of the number operator by using the difference theory. As a by-product, nontrivial relations including the Stirling number of the first kind are also obtained.

本文言語English
ページ(範囲)827-840
ページ数14
ジャーナルModern Physics Letters A
19
11
DOI
出版ステータスPublished - 2004 4 10
外部発表はい

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Astronomy and Astrophysics
  • Physics and Astronomy(all)

フィンガープリント 「A new symmetric expression of Weyl ordering」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル