A preference-based theory of intention

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

Although there has been much work on the logical formulation of intention, only little attention has been paid on the close relationship between intentions and preferences of an agent. As a result, the previous work cannot properly treat reasoning with information about preferences. In this paper, we investigate a preference-based approach to the logic of intention. Based on an intuition that intentions are desirable choices of an agent, we define a notion of intention in terms of the preference order of an agent. The definition is a simple and intuitive one, and intentions satisfy good and interesting properties. Then we apply our logic to the intention recognition problem. Based on our preference-based definition of intention, we give several sufficient conditions on preferences of an agent under which the action-effect heuristic rule is valid. In this way, we demonstrate that our formalism can give a good basis for designing and understanding heuristics and control strategies for them in the intention recognition domain.

本文言語English
ホスト出版物のタイトルPRICAI 2000, Topics in Artificial Intelligence - 6th Pacific Rim International Conference on Artificial Intelligence, Proceedings
編集者Riichiro Mizoguchi, John Slaney
出版社Springer Verlag
ページ308-317
ページ数10
ISBN(印刷版)3540679251, 9783540679257
DOI
出版ステータスPublished - 2000
外部発表はい
イベント6th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2000 - Melbourne, VIC, Australia
継続期間: 2000 8 282000 9 1

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
1886 LNAI
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference6th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2000
国/地域Australia
CityMelbourne, VIC
Period00/8/2800/9/1

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「A preference-based theory of intention」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル