A walk on max-plus algebra

Sennosuke Watanabe, Akiko Fukuda, Etsuo Segawa, Iwao Sato

研究成果: Article査読

抄録

Max-plus algebra is a kind of idempotent semiring over Rmax:=R∪{−∞} with two operations ⊕:=max and ⊗:=+. In this paper, we introduce a new model of a walk on one dimensional lattice on Z, as an analogue of the quantum walk, over the max-plus algebra and we call it max-plus walk. In the conventional quantum walk, the summation of the ℓ2-norm of the states over all the positions is a conserved quantity. In contrast, the summation of eigenvalues of state decision matrices is a conserved quantity in the max-plus walk. Moreover, spectral analysis on the total time evolution operator is also given.

本文言語English
ページ(範囲)29-48
ページ数20
ジャーナルLinear Algebra and Its Applications
598
DOI
出版ステータスPublished - 2020 8 1

ASJC Scopus subject areas

  • Algebra and Number Theory
  • Numerical Analysis
  • Geometry and Topology
  • Discrete Mathematics and Combinatorics

フィンガープリント 「A walk on max-plus algebra」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル