[a,b]-factors of graphs on surfaces

Ryota Matsubara, Haruhide Matsuda, Nana Matsuo, Kenta Noguchi, Kenta Ozeki

研究成果: Article

抜粋

A well-known conjecture of Grünbaum (1970) and Nash-Williams (1971) asserts that every 4-connected toroidal graph has a Hamiltonian cycle. Related to this conjecture, Kawarabayashi and Ozeki (2011) proved two results on a 2-factor and a 3-factor. In this paper, motivated by these results, we give several sufficient conditions for a graph embedded in a surface to have an [a,b]-factor. We also show that several conditions are best possible.

元の言語English
ページ(範囲)1979-1988
ページ数10
ジャーナルDiscrete Mathematics
342
発行部数7
DOI
出版物ステータスPublished - 2019 7 1

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics

フィンガープリント [a,b]-factors of graphs on surfaces' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用