Accuracy improvement of lung cancer detection based on spatial statistical analysis of thoracic CT scans

Hotaka Takizawa, Shinji Yamamoto, Tsuyoshi Shiina

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

This paper describes a novel discrimination method of lung cancers based on statistical analysis of thoracic computed tomography (CT) scans. Our previous Computer-Aided Diagnosis (CAD) system can detect lung cancers from CT scans, but, at the same time, yields many false positives. In order to reduce the false positives, the method proposed in the present paper uses a relationship between lung cancers, false positives and image information on CT scans. The trend of variation of the relationships is acquired through statistical analysis of a set of CT scans prepared for training. In testing, by use of the trend, the method predicts the appearance of lung cancers and false positives in a CT scan, and improves the accuracy of the previous CAD system by modifying the system's output based on the prediction. The method is applied to 218 actual thoracic CT scans with 386 actual lung cancers. Receiver operating characteristic (ROC) analysis is used to evaluate the results. The area under the ROC curve (Az) is statistically significantly improved from 0.918 to 0.931.

本文言語English
ホスト出版物のタイトルComputer Vision/Computer Graphics Collaboration Techniques - Third International Conference, MIRAGE 2007, Proceedings
出版社Springer Verlag
ページ607-617
ページ数11
ISBN(印刷版)3540714561, 9783540714569
DOI
出版ステータスPublished - 2007
外部発表はい
イベント3rd International Conference, MIRAGE 2007: Computer Vision/Computer Graphics Collaboration Techniques - Rocquencourt, France
継続期間: 2007 3月 282007 3月 30

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
4418 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference3rd International Conference, MIRAGE 2007: Computer Vision/Computer Graphics Collaboration Techniques
国/地域France
CityRocquencourt
Period07/3/2807/3/30

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Accuracy improvement of lung cancer detection based on spatial statistical analysis of thoracic CT scans」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル