Adaptive Neural Digital Control of Hysteretic Systems with Implicit Inverse Compensator and Its Application on Magnetostrictive Actuatoir

Xiuyu Zhang, Bin Li, Zhi Li, Chenguang Yang, Xinkai Chen, Chun Yi Su

研究成果: Article査読

11 被引用数 (Scopus)

抄録

Hysteresis is a complex nonlinear effect in smart materials-based actuators, which degrades the positioning performance of the actuator, especially when the hysteresis shows asymmetric characteristics. In order to mitigate the asymmetric hysteresis effect, an adaptive neural digital dynamic surface control (DSC) scheme with the implicit inverse compensator is developed in this article. The implicit inverse compensator for the purpose of compensating for the hysteresis effect is applied to find the compensation signal by searching the optimal control laws from the hysteresis output, which avoids the construction of the inverse hysteresis model. The adaptive neural digital controller is achieved by using a discrete-time neural network controller to realize the discretization of time and quantizing the control signal to realize the discretization of the amplitude. The adaptive neural digital controller ensures the semiglobally uniformly ultimately bounded (SUUB) of all signals in the closed-loop control system. The effectiveness of the proposed approach is validated via the magnetostrictive-actuated system.

本文言語English
ページ(範囲)667-680
ページ数14
ジャーナルIEEE Transactions on Neural Networks and Learning Systems
33
2
DOI
出版ステータスPublished - 2022 2月 1

ASJC Scopus subject areas

  • ソフトウェア
  • コンピュータ サイエンスの応用
  • コンピュータ ネットワークおよび通信
  • 人工知能

フィンガープリント

「Adaptive Neural Digital Control of Hysteretic Systems with Implicit Inverse Compensator and Its Application on Magnetostrictive Actuatoir」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル