An extension of lie algebraic stability analysis for switched systems with continuous-time and discrete-time subsystems

Guisheng Zhai, Xuping Xu, Hai Lin, Derong Liu

研究成果: Conference contribution

6 被引用数 (Scopus)

抄録

We analyze stability for switched systems which are composed of both continuous-time and discrete-time subsystems. By considering a Lie algebra generated by all subsystem matrices, we show that if all subsystems are Hurwitz/Schur stable and this Lie algebra is solvable, then there is a common quadratic Lyapunov function for all subsystems and thus the switched system is exponentially stable under arbitrary switching. When not all subsystems are stable and the same Lie algebra is solvable, we show that there is a common quadratic Lyapunov-like function for all subsystems and the switched system is exponentially stable under a dwell time scheme. Two numerical examples are provided to demonstrate the result.

本文言語English
ホスト出版物のタイトルProceedings of the 2006 IEEE International Conference on Networking, Sensing and Control, ICNSC'06
ページ362-367
ページ数6
出版ステータスPublished - 2006
外部発表はい
イベント2006 IEEE International Conference on Networking, Sensing and Control, ICNSC'06 - Ft. Lauderdale, FL, United States
継続期間: 2006 4月 232006 4月 25

出版物シリーズ

名前Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control, ICNSC'06

Conference

Conference2006 IEEE International Conference on Networking, Sensing and Control, ICNSC'06
国/地域United States
CityFt. Lauderdale, FL
Period06/4/2306/4/25

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • 制御およびシステム工学

フィンガープリント

「An extension of lie algebraic stability analysis for switched systems with continuous-time and discrete-time subsystems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル