Analysis and design of switched normal systems

Guisheng Zhai, Xuping Xu, Hai Lin, Anthony N. Michel

研究成果: Article査読

46 被引用数 (Scopus)

抄録

In this paper, we study the stability property for a class of switched linear systems whose subsystems are normal. The subsystems can be continuous-time or discrete-time ones. We show that when all the continuous-time subsystems are Hurwitz stable and all the discrete-time subsystems are Schur stable, a common quadratic Lyapunov function exists for the subsystems and thus the switched system is exponentially stable under arbitrary switching. We show that when unstable subsystems are involved, for a desired decay rate of the system, if the activation time ratio between stable subsystems and unstable ones is less than a certain value (calculated using the decay rate), then the switched system is exponentially stable with the desired decay rate.

本文言語English
ページ(範囲)2248-2259
ページ数12
ジャーナルNonlinear Analysis, Theory, Methods and Applications
65
12
DOI
出版ステータスPublished - 2006 12月 15
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Analysis and design of switched normal systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル