Application of new Monte Carlo algorithms to random spin systems

Yutaka Okabe, Yusuke Tomita, Chiaki Yamaguchi

研究成果: Article

25 引用 (Scopus)

抜粋

We explain the idea of the probability-changing cluster (PCC) algorithm, which is an extended version of the Swendsen-Wang algorithm. With this algorithm, we can tune the critical point automatically. We show the effectiveness of the PCC algorithm for the case of the three-dimensional (3D) Ising model. We also apply this new algorithm to the study of the 3D diluted Ising model. Since we tune the critical point of each random sample automatically with the PCC algorithm, we can investigate the sample-dependent critical temperature and the sample average of physical quantities at each critical temperature, systematically. We have also applied another newly proposed algorithm, the Wang-Landau algorithm, to the study of the spin glass problem.

元の言語English
ページ(範囲)63-68
ページ数6
ジャーナルComputer Physics Communications
146
発行部数1
DOI
出版物ステータスPublished - 2002 6 15

ASJC Scopus subject areas

  • Hardware and Architecture
  • Physics and Astronomy(all)

フィンガープリント Application of new Monte Carlo algorithms to random spin systems' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用