Applications of generalized trigonometric functions with two parameters

Hiroyuki Kobayashi, Shingo Takeuchi

研究成果: Article

6 被引用数 (Scopus)

抄録

Generalized trigonometric functions (GTFs) are simple generalization of the classical trigonometric functions. GTFs are deeply related to the p-Laplacian, which is known as a typical nonlinear differential operator, and there are a lot of works on GTFs concerning the p-Laplacian. However, few applications to differential equations unrelated to the p-Laplacian are known. We will apply GTFs with two parameters to nonlinear nonlocal boundary value problems without p-Laplacian. Moreover, we will give integral formulas for the functions, e.g. Wallis-type formulas, and apply the formulas to the lemniscate function and the lemniscate constant.

本文言語English
ページ(範囲)1509-1521
ページ数13
ジャーナルCommunications on Pure and Applied Analysis
18
3
DOI
出版ステータスPublished - 2019 5 1

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

フィンガープリント 「Applications of generalized trigonometric functions with two parameters」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル