抄録
The integrable discrete hungry Lotka-Volterra (dhLV) system is easily transformed to the qd-type dhLV system, which resembles the recursion formula of the qd algorithm for computing matrix eigenvalues. Some of the qd-type dhLV variables play a role for assisting the time evolution of the others. This property does not appear in the original dhLV system. In this article, we first show the existence of a centre manifold for the qd-type dhLV system. With the help of the centre manifold theory, we next investigate the local convergence of the qd-type dhLV system, and then clarify the monotonicity related to the qd-type dhLV variables at the final phase of the convergence.
本文言語 | English |
---|---|
ページ(範囲) | 586-594 |
ページ数 | 9 |
ジャーナル | Applicable Analysis |
巻 | 92 |
号 | 3 |
DOI | |
出版ステータス | Published - 2013 3月 |
外部発表 | はい |
ASJC Scopus subject areas
- 分析
- 応用数学