Asymptotic behavior of solutions for partial differential equations with degenerate diffusion and logistic reaction

研究成果: Conference article査読

抄録

Global existence and asymptotic behavior of solutions for degenerate parabolic equations including ut = λ div (|∇u|p-2 ∇u) + |u|q-2u(1 - |u|r) are studied, where λ is a positive parameter; p > 2, q ≥ 2 and r > 0 are constants. In particular, the behavior of solutions for the initial data close to a maximal stationary solution is discussed. It is shown that the maximal stationary solution is asymptotically stable if p ≥ q and stable if p < q. For the latter case, some remarks on the attractivity of maximal stationary solution are also given.

本文言語English
ページ(範囲)1715-1724
ページ数10
ジャーナルNonlinear Analysis, Theory, Methods and Applications
47
3
DOI
出版ステータスPublished - 2001 8
外部発表はい
イベント3rd World Congress of Nonlinear Analysts - Catania, Sicily, Italy
継続期間: 2000 7 192000 7 26

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

フィンガープリント 「Asymptotic behavior of solutions for partial differential equations with degenerate diffusion and logistic reaction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル