Asymptotic expansions of multiple zeta functions and power mean values of Hurwitz zeta functions

Shigeki Egami, Kohji Matsumoto

研究成果: Article査読

5 被引用数 (Scopus)

抄録

Let ζ (s, α) be the Hurwitz zeta function with parameter α. Power mean values of the form ∑a=1qζ(s,a/q)h or ∑a=1qζ(s,a/q)2h are studied, where q and h are positive integers. These mean values can be written as linear combinations of ∑a=1qζr(S1,., Sr;a/q), where ζr(S1., Sr; α) is a generalization of Euler-Zagier multiple zeta sums. The Mellin-Barnes integral formula is used to prove an asymptotic expansion of ∑a=1qζr(S1,., Sr,;a/q) with respect to q. Hence a general way of deducing asymptotic expansion formulas for ∑a=1qζ(s, a/q)h and ∑a=1qζ(s, a/q)2h is obtained. In particular, the asymptotic expansion of ∑a=1qζ(1/2, a/q)3 with respect to q is written down.

本文言語English
ページ(範囲)41-60
ページ数20
ジャーナルJournal of the London Mathematical Society
66
1
DOI
出版ステータスPublished - 2002 8月

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Asymptotic expansions of multiple zeta functions and power mean values of Hurwitz zeta functions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル