Avoiding model selection bias in small-sample genomic datasets

Daniel Berrar, Ian Bradbury, Werner Dubitzky

研究成果: Article査読

40 被引用数 (Scopus)

抄録

Motivation: Genomic datasets generated by high-throughput technologies are typically characterized by a moderate number of samples and a large number of measurements per sample. As a consequence, classification models are commonly compared based on resampling techniques. This investigation discusses the conceptual difficulties involved in comparative classification studies. Conclusions derived from such studies are often optimistically biased, because the apparent differences in performance are usually not controlled in a statistically stringent framework taking into account the adopted sampling strategy. We investigate this problem by means of a comparison of various classifiers in the context of multiclass microarray data. Results: Commonly used accuracy-based performance values, with or without confidence intervals, are inadequate for comparing classifiers for small-sample data. We present a statistical methodology that avoids bias in cross-validated model selection in the context of small-sample scenarios. This methodology is valid for both k-fold cross-validation and repeated random sampling.

本文言語English
ページ(範囲)1245-1250
ページ数6
ジャーナルBioinformatics
22
10
DOI
出版ステータスPublished - 2006 5月 15
外部発表はい

ASJC Scopus subject areas

  • 統計学および確率
  • 生化学
  • 分子生物学
  • コンピュータ サイエンスの応用
  • 計算理論と計算数学
  • 計算数学

フィンガープリント

「Avoiding model selection bias in small-sample genomic datasets」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル