Bezdek-type fuzzified co-clustering algorithm

研究成果: Article査読

13 被引用数 (Scopus)

抄録

In this study, two co-clustering algorithms based on Bezdek-type fuzzification of fuzzy clustering are proposed for categorical multivariate data. The two proposed algorithms are motivated by the fact that there are only two fuzzy co-clustering methods currently available - entropy regularization and quadratic regularization - whereas there are three fuzzy clustering methods for vectorial data: entropy regularization, quadratic regularization, and Bezdek-type fuzzification. The first proposed algorithm forms the basis of the second algorithm. The first algorithm is a variant of a spherical clustering method, with the kernelization of a maximizing model of Bezdek-type fuzzy clustering with multi-medoids. By interpreting the first algorithm in this way, the second algorithm, a spectral clustering approach, is obtained. Numerical examples demonstrate that the proposed algorithms can produce satisfactory results when suitable parameter values are selected.

本文言語English
ページ(範囲)852-860
ページ数9
ジャーナルJournal of Advanced Computational Intelligence and Intelligent Informatics
19
6
DOI
出版ステータスPublished - 2015

ASJC Scopus subject areas

  • 人間とコンピュータの相互作用
  • コンピュータ ビジョンおよびパターン認識
  • 人工知能

フィンガープリント

「Bezdek-type fuzzified co-clustering algorithm」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル