Boltzmann machine learning with a variational quantum algorithm

Yuta Shingu, Yuya Seki, Shohei Watabe, Suguru Endo, Yuichiro Matsuzaki, Shiro Kawabata, Tetsuro Nikuni, Hideaki Hakoshima

研究成果: Article査読

4 被引用数 (Scopus)

抄録

A Boltzmann machine is a powerful tool for modeling probability distributions that govern the training data. A thermal equilibrium state is typically used for the Boltzmann machine learning to obtain a suitable probability distribution. The Boltzmann machine learning consists of calculating the gradient of the loss function given in terms of the thermal average, which is the most time-consuming procedure. Here, we propose a method to implement the Boltzmann machine learning by using noisy intermediate-scale quantum devices. We prepare an initial pure state that contains all possible computational basis states with the same amplitude, and we apply a variational imaginary time simulation. Readout of the state after the evolution in the computational basis approximates the probability distribution of the thermal equilibrium state that is used for the Boltzmann machine learning. We perform the numerical simulations of our scheme and confirm that the Boltzmann machine learning works well. Our scheme leads to a significant step toward an efficient machine learning using quantum hardware.

本文言語English
論文番号032413
ジャーナルPhysical Review A
104
3
DOI
出版ステータスPublished - 2021 9月
外部発表はい

ASJC Scopus subject areas

  • 原子分子物理学および光学

フィンガープリント

「Boltzmann machine learning with a variational quantum algorithm」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル