Calculation of Gibbs partition function with imaginary time evolution on near-term quantum computers

Keisuke Matsumoto, Yuta Shingu, Suguru Endo, Shiro Kawabata, Shohei Watabe, Tetsuro Nikuni, Hideaki Hakoshima, Yuichiro Matsuzaki

研究成果: Article査読

2 被引用数 (Scopus)

抄録

The Gibbs partition function is an important quantity in describing statistical properties of a system in thermodynamic equilibrium. There are several proposals to calculate the partition functions on near-term quantum computers. However, the existing schemes require many copies of the Gibbs states to perform an extrapolation for the calculation of the partition function, which could be costly performed on the near-term quantum computers. We propose a scheme to calculate the Gibbs function with the imaginary time evolution. After preparing Gibbs states with different temperatures by using the imaginary time evolution, we measure the overlap between them on a quantum circuit, which allows us to calculate the Gibbs partition function. Our scheme requires only 2N qubits to calculate the Gibbs function of N qubits.

本文言語English
論文番号042002
ジャーナルJapanese Journal of Applied Physics
61
4
DOI
出版ステータスPublished - 2022 4月
外部発表はい

ASJC Scopus subject areas

  • 工学(全般)
  • 物理学および天文学(全般)

フィンガープリント

「Calculation of Gibbs partition function with imaginary time evolution on near-term quantum computers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル