Comparison of experimental and simulation results on catalytic HI decomposition in a silica-based ceramic membrane reactor

Odtsetseg Myagmarjav, Nobuyuki Tanaka, Mikihiro Nomura, Shinji Kubo

研究成果: Article

2 引用 (Scopus)

抜粋

In this study, the catalytic decomposition of hydrogen iodide was theoretically and experimentally investigated in a silica-based ceramic membrane reactor to assess the reactor's suitability for thermochemical hydrogen production. The silica membranes were fabricated by depositing a thin silica layer onto the surface of porous alumina ceramic support tubes via counter-diffusion chemical vapor deposition of hexyltrimethoxysilane. The performance of the silica-based ceramic membrane reactor was evaluated by exploring important operating parameters such as the flow rates of the hydrogen iodide feed and the nitrogen sweep gas. The influence of the flow rates on the hydrogen iodide decomposition conversion was investigated in the lower range of the investigated feed flow rates and in the higher range of the sweep-gas flow rates. The experimental data agreed with the simulation results reasonably well, and both highlighted the possibility of achieving a conversion greater than 0.70 at decomposition temperature of 400 °C. Therefore, the developed silica-based ceramic membrane reactor could enhance the total thermal efficiency of the thermochemical process.

元の言語English
ページ(範囲)30832-30839
ページ数8
ジャーナルInternational Journal of Hydrogen Energy
44
発行部数59
DOI
出版物ステータスPublished - 2019 11 29

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology

フィンガープリント Comparison of experimental and simulation results on catalytic HI decomposition in a silica-based ceramic membrane reactor' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用