### 抜粋

A Bayesian network is a probabilistic graphical model. Many conventional methods have been proposed for its construction. However, these methods often result in an incorrect Bayesian network structure. In this study, to correctly construct a Bayesian network, we extend the concept of propositional logic. We propose a methodology for constructing a Bayesian network with causal relationships that are extracted only if the antecedent states are true. In order to determine the logic to be used in constructing the Bayesian network, we propose the use of association rule mining such as the Apriori algorithm. We evaluate the proposed method by comparing its result with that of traditional method, such as Bayesian Dirichlet equivalent uniform (BDeu) score evaluation with a hill climbing algorithm, that shows that our method generates a network with more necessary arcs than that generated by the traditional method.

元の言語 | English |
---|---|

ホスト出版物のタイトル | KDIR |

出版者 | SciTePress |

ページ | 211-217 |

ページ数 | 7 |

巻 | 1 |

ISBN（印刷物） | 9789897581588 |

出版物ステータス | Published - 2015 |

イベント | 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K 2015 - Lisbon, Portugal 継続期間: 2015 11 12 → 2015 11 14 |

### Other

Other | 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K 2015 |
---|---|

国 | Portugal |

市 | Lisbon |

期間 | 15/11/12 → 15/11/14 |

### ASJC Scopus subject areas

- Software

## フィンガープリント Construction of a Bayesian network as an extension of propositional logic' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

## これを引用

*KDIR*(巻 1, pp. 211-217). SciTePress.