Critical nonequilibrium relaxation in the Swendsen-Wang algorithm in the Berezinsky-Kosterlitz-Thouless and weak first-order phase transitions

Yoshihiko Nonomura, Yusuke Tomita

研究成果: Article査読

7 被引用数 (Scopus)

抄録

Recently we showed that the critical nonequilibrium relaxation in the Swendsen-Wang algorithm is widely described by the stretched-exponential relaxation of physical quantities in the Ising or Heisenberg models. Here we make a similar analysis in the Berezinsky-Kosterlitz-Thouless phase transition in the two-dimensional (2D) XY model and in the first-order phase transition in the 2D q=5 Potts model and find that these phase transitions are described by the simple exponential relaxation and power-law relaxation of physical quantities, respectively. We compare the relaxation behaviors of these phase transitions with those of the second-order phase transition in the three- and four-dimensional XY models and in the 2D q-state Potts models for 2≤q≤4 and show that the species of phase transitions can be clearly characterized by the present analysis. We also compare the size dependence of relaxation behaviors of the first-order phase transition in the 2D q=5 and 6 Potts models and propose a quantitative criterion on "weakness" of the first-order phase transition.

本文言語English
論文番号062121
ジャーナルPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
92
6
DOI
出版ステータスPublished - 2015 12 10

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Critical nonequilibrium relaxation in the Swendsen-Wang algorithm in the Berezinsky-Kosterlitz-Thouless and weak first-order phase transitions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル