TY - JOUR
T1 - Denominators of Egyptian fractions
AU - Yokota, Hisashi
PY - 1988/3
Y1 - 1988/3
N2 - Let D(a,N) = min{nk: a N = Σ1k 1 ni, n1 < n2 < ... < nk, ni ε{lunate} Z0}, where the minimum ranges over all expansions of a N, and let D(N) = max{D(a,N): 1 ≤ a < N}. Then D(N) N ≤ (logN) 3 2+ε{lunate}, where ε{lunate} →0 as N → ∞, improving the result of M.N. Bleicher and P. Erdös.
AB - Let D(a,N) = min{nk: a N = Σ1k 1 ni, n1 < n2 < ... < nk, ni ε{lunate} Z0}, where the minimum ranges over all expansions of a N, and let D(N) = max{D(a,N): 1 ≤ a < N}. Then D(N) N ≤ (logN) 3 2+ε{lunate}, where ε{lunate} →0 as N → ∞, improving the result of M.N. Bleicher and P. Erdös.
UR - http://www.scopus.com/inward/record.url?scp=38249028061&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=38249028061&partnerID=8YFLogxK
U2 - 10.1016/0022-314X(88)90041-8
DO - 10.1016/0022-314X(88)90041-8
M3 - Article
AN - SCOPUS:38249028061
VL - 28
SP - 258
EP - 271
JO - Journal of Number Theory
JF - Journal of Number Theory
SN - 0022-314X
IS - 3
ER -