Development of an enzyme-free glucose sensor using the gate effect of a molecularly imprinted polymer

Yasuo Yoshimi, Akisato Narimatsu, Keisuke Nakayama, Shinichi Sekine, Koji Hattori, Kiyotaka Sakai

研究成果: Article査読

37 被引用数 (Scopus)

抄録

The instability of enzymatic glucose sensors has prevented the development of a practical artificial pancreas for diabetic patients. We therefore developed an enzyme-free glucose sensor using the gate effect of a molecularly imprinted polymer (MIP). This sensor has the advantages of improved stability and a simplified manufacturing procedure. An adduct of glucose and 4-vinylphenylboronic acid (VPBA) was synthesized by esterification and was then purified. The copolymer of the glucose/VPBA adduct and methylene bisacrylamide was grafted onto an indium tin oxide electrode surface. Glucose was washed out from the copolymer to obtain an MIP layer. Cyclic voltammetry of ferrocyanide in aqueous solution was performed using an MIP-grafted electrode, and the effect of glucose on the anodic current intensity was evaluated. The anodic current intensity was sensitive to the glucose concentration, and the dynamic range (0-900 mg/dl) covered the typical range of diabetic blood glucose levels. The response time of the MIP-grafted electrode to a stepwise change in the glucose concentration was approximately 3-5 min. Thus, we can conclude that, by taking advantage of its gate effect, it is feasible to use an MIP-grafted electrode as a glucose sensor for monitoring blood sugar in diabetic patients.

本文言語English
ページ(範囲)264-270
ページ数7
ジャーナルJournal of Artificial Organs
12
4
DOI
出版ステータスPublished - 2009 12月 1

ASJC Scopus subject areas

  • 医学(その他)
  • 生体材料
  • 生体医工学
  • 循環器および心血管医学

フィンガープリント

「Development of an enzyme-free glucose sensor using the gate effect of a molecularly imprinted polymer」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル