Development of technology for a reliable fabrication of LRE-123 materials for levitation applications above 80 K

M. Muralidhar, N. Sakai, M. Jirsa, M. Murakami, N. Koshizuka, I. Hirabayashi

研究成果: Conference article

抜粋

Nanoscale secondary phase Gd2BaCuO5 "Gd-211" particles less than 60 nm in size, added to mixed ternary LREBa2Cu3Oy [LRE = (Nd0.33Eu 0.33Gd0.33), (Sm0.33Eu0.33Gd 0.33), (Nd0.33Sm0.33Gd0.33)] "NEG-123, SEG-123, NSG-123" oxide powders and melt-processed in Ar-1%pO2 gas mixture, significantly improve electromagnetic performance at low magnetic fields. As confirmed by transmission electron microscopy and dynamic force microscopy, the nanoparticles in the LRE-123 matrix not only survive the melt-texturing process but, thanks to their contamination by Zr coming from ball milling process, these particles in majority transform into a new type of even smaller defects. Further improvement in flux pinning was reached when both 123 and 211 powders were thoroughly ball milled before the melt-growth process to the similar small size. As a result, Jc values of 260 kA/cm2 and 55 kA/cm2 were observed in remnant state at 77 K and 90 K, respectively.

元の言語English
ページ(範囲)777-782
ページ数6
ジャーナルPhysica C: Superconductivity and its applications
426-431
発行部数I
DOI
出版物ステータスPublished - 2005 10 1
イベントProceedings of the 17th International Symposium on Superconductivity (ISS 2004) Advances in Supeconductivity -
継続期間: 2004 11 232004 11 25

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering

フィンガープリント Development of technology for a reliable fabrication of LRE-123 materials for levitation applications above 80 K' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用