ハングリー型の離散可積分系と非対称行列の固有値計算: 可積分アルゴリズムにおける最近の発展

Akiko Fukuda, Masashi Iwasaki, Yusaku Yamamoto, Emiko Ishiwata, Yoshimasa Nakamura

研究成果: Article査読

抄録

Some numerical algorithms for computing eigenvalues of nonsymmetric matrix
with high accuracy have been recently designed based on the discrete hungry Toda equation
and the discrete Lotka-Volterra system which are known as the discrete integrable systems
of hungry type. In this paper, not only the process for formulating these algorithms but
also the results concerning asymptotic analysis through the center manifold theory, mixed
error analysis in
oating point arithmetic and shift of origin for accelerating convergence
are shortly explained. Backlund transformations between discrete integrable systems of
hungry type are also shown.
寄稿の翻訳タイトルDiscrete Integrable Systems of Hungry Type and Numerical Algorithms for Eigenvalues of Nonsymmetric Matrices: Recent Developments in Integrable Algorithms
本文言語Japanese
ページ(範囲)109-181
ジャーナル Transactions of the Japan Society for Industrial and Applied Mathematics
23
出版ステータスPublished - 2013

フィンガープリント

「ハングリー型の離散可積分系と非対称行列の固有値計算: 可積分アルゴリズムにおける最近の発展」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル