Effects of interface layer on thermoelectric properties of a pn junction prepared via the BMA-HP method

J. Y. Yang, T. Aizawa, A. Yamamoto, T. Ohta

研究成果: Article査読

29 被引用数 (Scopus)

抄録

Prealloyed p and n-type bismuth telluride-based materials produced by bulk mechanical alloying are directly one-step hot-pressed to yield a thermoelectric pn junction. Variation of constitutional element concentrations across the pn interface is characterized by EPMA to determine the interface thickness of the pn junction. The electrical resistivity of the interface layer is greater than that of both p and n semiconductor materials. Analytic expressions for Seebeck coefficient and figure of merit versus interface layer size are deduced. The Seebeck coefficient of the pn junction is inversely proportional to the ratio of the interface layer length to the pn junction height (hi/h) and agrees well with experimental results. In a pn junction with an interface layer certain thickness, there is a maximum figure of merit at the optimal hi/h; with the decrease in interface thickness, the maximum increases, and correspondingly, the optimal hi/h decreases. In other words, the pn composite billet with a thinner interface layer can attain a larger figure of merit at the same hi/h than that with a thicker interface. Adjusting the process parameter, with proper cutting, thermoelectric properties can be improved greatly; this method of producing a pn junction is feasible.

本文言語English
ページ(範囲)34-37
ページ数4
ジャーナルMaterials Science and Engineering B: Solid-State Materials for Advanced Technology
85
1
DOI
出版ステータスPublished - 2001 8 6

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

フィンガープリント 「Effects of interface layer on thermoelectric properties of a pn junction prepared via the BMA-HP method」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル