抄録
In this study, we investigate the potential sales forecasts of unhandled bread products in retail stores based on factory shipment data. An embedding-based forecasting method that uses large-scale information network embedding (LINE) and simultaneously considers first- and second-order proximities is developed to define similar neighboring stores using their product-store relationship and to predict their potential sales volume. LINE is a network-embedding method that transforms network data into a lowdimensional distributed representation and requires a low computation time, even when applied to large networks. The results show that our proposed method outperforms a simple prediction method (Baseline) and t-SNE, a well-known dimensionality reduction method for high-dimensional data, in terms of accurate product sales prediction via simulation experiments. Furthermore, we conduct a sensitivity analysis to verify the applicability of our proposed method when the forecasting target is expanded to products sold in fewer stores and in stores with less product variety.
本文言語 | English |
---|---|
ページ(範囲) | 236-246 |
ページ数 | 11 |
ジャーナル | Journal of Advanced Computational Intelligence and Intelligent Informatics |
巻 | 26 |
号 | 2 |
DOI | |
出版ステータス | Published - 2022 3月 |
ASJC Scopus subject areas
- 人間とコンピュータの相互作用
- コンピュータ ビジョンおよびパターン認識
- 人工知能