Epidermal Growth Factor-Activated Extracellular Signal-Regulated Kinase Suppresses Growth Hormone Expression and Stimulates Proliferation in MtT/E Cells

H. Nogami, H. Soya, Y. Hiraoka, Sadakazu Aiso, S. Hisano

研究成果: Article

3 引用 (Scopus)

抄録

The mechanism for the inhibition of growth hormone (GH) expression by the epidermal growth factor (EGF) was examined in two clonal cell lines, MtT/E and MtT/S. The former has a negligible basal level of GH, whereas the latter has a high basal GH. The treatment of MtT/E cells with retinoic acid resulted in a significant increase in GH mRNA and subsequently GH. This stimulatory response to retinoic acid was strongly suppressed by EGF. This suppression was associated with an increase in the phosphorylation of extracellular signal-regulated kinase 1 and 2 (Erk1/2). The MEK [mitogen-activated protein kinase (MAPK) kinases that activate ERK1 and ERK2] inhibitor, PD98059, clearly inhibited the phosphorylation of Erk1/2 and restored the stimulatory effects of retinoic acid. These results suggest that the inhibitory effects of EGF on GH expression are mediated by MAPK activation in these cells. By contrast to the GH-producing clones examined previously, EGF showed a marked stimulation of proliferation of the MtT/E cells through a mechanism dependent on MAPK activation. On the other hand, the inhibitory effect of EGF on GH expression was less pronounced and the stimulation of cellular proliferation was not seen in MtT/S cells, even though it induced Erk-phosphorylation similar to that seen in MtT/E. The distinct difference in the response to EGF between these two GH cell lines appears to be attributed to differences in the function of MAPK cascade in each cell line. This may reflect the developmental stage of the cells from which MtT/E and MtT/S are derived.

元の言語English
ページ(範囲)357-365
ページ数9
ジャーナルJournal of Neuroendocrinology
24
発行部数2
DOI
出版物ステータスPublished - 2012 2 1
外部発表Yes

ASJC Scopus subject areas

  • Endocrinology
  • Endocrinology, Diabetes and Metabolism
  • Endocrine and Autonomic Systems
  • Cellular and Molecular Neuroscience

これを引用

@article{50c23c42de004b7784e1ea8bc6e3ece2,
title = "Epidermal Growth Factor-Activated Extracellular Signal-Regulated Kinase Suppresses Growth Hormone Expression and Stimulates Proliferation in MtT/E Cells",
abstract = "The mechanism for the inhibition of growth hormone (GH) expression by the epidermal growth factor (EGF) was examined in two clonal cell lines, MtT/E and MtT/S. The former has a negligible basal level of GH, whereas the latter has a high basal GH. The treatment of MtT/E cells with retinoic acid resulted in a significant increase in GH mRNA and subsequently GH. This stimulatory response to retinoic acid was strongly suppressed by EGF. This suppression was associated with an increase in the phosphorylation of extracellular signal-regulated kinase 1 and 2 (Erk1/2). The MEK [mitogen-activated protein kinase (MAPK) kinases that activate ERK1 and ERK2] inhibitor, PD98059, clearly inhibited the phosphorylation of Erk1/2 and restored the stimulatory effects of retinoic acid. These results suggest that the inhibitory effects of EGF on GH expression are mediated by MAPK activation in these cells. By contrast to the GH-producing clones examined previously, EGF showed a marked stimulation of proliferation of the MtT/E cells through a mechanism dependent on MAPK activation. On the other hand, the inhibitory effect of EGF on GH expression was less pronounced and the stimulation of cellular proliferation was not seen in MtT/S cells, even though it induced Erk-phosphorylation similar to that seen in MtT/E. The distinct difference in the response to EGF between these two GH cell lines appears to be attributed to differences in the function of MAPK cascade in each cell line. This may reflect the developmental stage of the cells from which MtT/E and MtT/S are derived.",
keywords = "Epidermal growth factor, Growth hormone, Mitogen-activated protein kinase, Proliferation",
author = "H. Nogami and H. Soya and Y. Hiraoka and Sadakazu Aiso and S. Hisano",
year = "2012",
month = "2",
day = "1",
doi = "10.1111/j.1365-2826.2011.02247.x",
language = "English",
volume = "24",
pages = "357--365",
journal = "Journal of Neuroendocrinology",
issn = "0953-8194",
publisher = "Wiley-Blackwell",
number = "2",

}

TY - JOUR

T1 - Epidermal Growth Factor-Activated Extracellular Signal-Regulated Kinase Suppresses Growth Hormone Expression and Stimulates Proliferation in MtT/E Cells

AU - Nogami, H.

AU - Soya, H.

AU - Hiraoka, Y.

AU - Aiso, Sadakazu

AU - Hisano, S.

PY - 2012/2/1

Y1 - 2012/2/1

N2 - The mechanism for the inhibition of growth hormone (GH) expression by the epidermal growth factor (EGF) was examined in two clonal cell lines, MtT/E and MtT/S. The former has a negligible basal level of GH, whereas the latter has a high basal GH. The treatment of MtT/E cells with retinoic acid resulted in a significant increase in GH mRNA and subsequently GH. This stimulatory response to retinoic acid was strongly suppressed by EGF. This suppression was associated with an increase in the phosphorylation of extracellular signal-regulated kinase 1 and 2 (Erk1/2). The MEK [mitogen-activated protein kinase (MAPK) kinases that activate ERK1 and ERK2] inhibitor, PD98059, clearly inhibited the phosphorylation of Erk1/2 and restored the stimulatory effects of retinoic acid. These results suggest that the inhibitory effects of EGF on GH expression are mediated by MAPK activation in these cells. By contrast to the GH-producing clones examined previously, EGF showed a marked stimulation of proliferation of the MtT/E cells through a mechanism dependent on MAPK activation. On the other hand, the inhibitory effect of EGF on GH expression was less pronounced and the stimulation of cellular proliferation was not seen in MtT/S cells, even though it induced Erk-phosphorylation similar to that seen in MtT/E. The distinct difference in the response to EGF between these two GH cell lines appears to be attributed to differences in the function of MAPK cascade in each cell line. This may reflect the developmental stage of the cells from which MtT/E and MtT/S are derived.

AB - The mechanism for the inhibition of growth hormone (GH) expression by the epidermal growth factor (EGF) was examined in two clonal cell lines, MtT/E and MtT/S. The former has a negligible basal level of GH, whereas the latter has a high basal GH. The treatment of MtT/E cells with retinoic acid resulted in a significant increase in GH mRNA and subsequently GH. This stimulatory response to retinoic acid was strongly suppressed by EGF. This suppression was associated with an increase in the phosphorylation of extracellular signal-regulated kinase 1 and 2 (Erk1/2). The MEK [mitogen-activated protein kinase (MAPK) kinases that activate ERK1 and ERK2] inhibitor, PD98059, clearly inhibited the phosphorylation of Erk1/2 and restored the stimulatory effects of retinoic acid. These results suggest that the inhibitory effects of EGF on GH expression are mediated by MAPK activation in these cells. By contrast to the GH-producing clones examined previously, EGF showed a marked stimulation of proliferation of the MtT/E cells through a mechanism dependent on MAPK activation. On the other hand, the inhibitory effect of EGF on GH expression was less pronounced and the stimulation of cellular proliferation was not seen in MtT/S cells, even though it induced Erk-phosphorylation similar to that seen in MtT/E. The distinct difference in the response to EGF between these two GH cell lines appears to be attributed to differences in the function of MAPK cascade in each cell line. This may reflect the developmental stage of the cells from which MtT/E and MtT/S are derived.

KW - Epidermal growth factor

KW - Growth hormone

KW - Mitogen-activated protein kinase

KW - Proliferation

UR - http://www.scopus.com/inward/record.url?scp=84855915899&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84855915899&partnerID=8YFLogxK

U2 - 10.1111/j.1365-2826.2011.02247.x

DO - 10.1111/j.1365-2826.2011.02247.x

M3 - Article

C2 - 22026435

AN - SCOPUS:84855915899

VL - 24

SP - 357

EP - 365

JO - Journal of Neuroendocrinology

JF - Journal of Neuroendocrinology

SN - 0953-8194

IS - 2

ER -