TY - JOUR
T1 - EsVHO
T2 - Energy saving vertical handover extension for local SDN in non-interconnected environment
AU - Duc, Toan Nguyen
AU - Kamioka, Eiji
N1 - Publisher Copyright:
Copyright © 2017 The Institute of Electronics, Information and Communication Engineers.
PY - 2017/11
Y1 - 2017/11
N2 - Wireless technologies that offer high data rate are generally energy-consuming ones while low-energy technologies commonly provide low data rate. Both kinds of technologies have been integrated in a single mobile device for different services. Therefore, if the service does not always require high data rate, the low energy technology, i.e., Bluetooth, can be used instead of the energy-consuming one, i.e., Wi-Fi, for saving energy. It is obvious that energy savings are maximized by turning the unused technology off. However, when active sessions of ongoing services migrate between different technologies, the network-layer connectivity must be maintained, or a vertical handover (VHO) between different networks is required. Moreover, when the networks are not interconnected, the VHO must be fully controlled by the device itself. The device typically navigates traffic through the firmware of the wireless network interface cards (WNIC) using their drivers, which are dependent on the vendors. To control the traffic navigation between WNICs without any modification of the WNICs' drivers, Software-Defined Networking (SDN) can be applied locally on the mobile device, the so called local SDN. In the local SDN architecture, a local SDN controller (SDNC) is used to control a virtual OpenFlow switch, which turns WNICs into its switch ports. Although the SDNC can navigate the traffic, it lacks the global view of the network topology. Hence, to correctly navigate traffic in a VHO process, an extended SDN controller (extSDNC) was proposed in a previous work. With the extSDNC, the SDNC can perform VHO based on a link layer trigger but with a significant packet loss rate. Therefore, in this paper, a framework named esVHO is proposed that executes VHO at the network layer to reduce the packet loss rate and reduce energy consumption. Experiments on VHO performance prove that esVHO can reduce the packet loss rate considerably. Moreover, the results of an energy saving experiment show that esVHO performs high energy saving up to 4.89 times compared to the others.
AB - Wireless technologies that offer high data rate are generally energy-consuming ones while low-energy technologies commonly provide low data rate. Both kinds of technologies have been integrated in a single mobile device for different services. Therefore, if the service does not always require high data rate, the low energy technology, i.e., Bluetooth, can be used instead of the energy-consuming one, i.e., Wi-Fi, for saving energy. It is obvious that energy savings are maximized by turning the unused technology off. However, when active sessions of ongoing services migrate between different technologies, the network-layer connectivity must be maintained, or a vertical handover (VHO) between different networks is required. Moreover, when the networks are not interconnected, the VHO must be fully controlled by the device itself. The device typically navigates traffic through the firmware of the wireless network interface cards (WNIC) using their drivers, which are dependent on the vendors. To control the traffic navigation between WNICs without any modification of the WNICs' drivers, Software-Defined Networking (SDN) can be applied locally on the mobile device, the so called local SDN. In the local SDN architecture, a local SDN controller (SDNC) is used to control a virtual OpenFlow switch, which turns WNICs into its switch ports. Although the SDNC can navigate the traffic, it lacks the global view of the network topology. Hence, to correctly navigate traffic in a VHO process, an extended SDN controller (extSDNC) was proposed in a previous work. With the extSDNC, the SDNC can perform VHO based on a link layer trigger but with a significant packet loss rate. Therefore, in this paper, a framework named esVHO is proposed that executes VHO at the network layer to reduce the packet loss rate and reduce energy consumption. Experiments on VHO performance prove that esVHO can reduce the packet loss rate considerably. Moreover, the results of an energy saving experiment show that esVHO performs high energy saving up to 4.89 times compared to the others.
KW - Bidirectional vertical handover
KW - Bluetooth
KW - Energy saving
KW - EsVHO framework
KW - Heterogeneous communications network
KW - Wi-Fi
UR - http://www.scopus.com/inward/record.url?scp=85033550511&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85033550511&partnerID=8YFLogxK
U2 - 10.1587/transcom.2016NNP0007
DO - 10.1587/transcom.2016NNP0007
M3 - Article
AN - SCOPUS:85033550511
SN - 0916-8516
VL - E100B
SP - 2027
EP - 2037
JO - IEICE Transactions on Communications
JF - IEICE Transactions on Communications
IS - 11
ER -