Evaluation of Machine Learning Interatomic Potentials for the Properties of Gold Nanoparticles

Marco Fronzi, Roger D. Amos, Rika Kobayashi, Naoki Matsumura, Kenta Watanabe, Rafael K. Morizawa

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We have investigated Machine Learning Interatomic Potentials in application to the properties of gold nanoparticles through the DeePMD package, using data generated with the ab-initio VASP program. Benchmarking was carried out on Au (Formula presented.) nanoclusters against ab-initio molecular dynamics simulations and show we can achieve similar accuracy with the machine learned potential at far reduced cost using LAMMPS. We have been able to reproduce structures and heat capacities of several isomeric forms. Comparison of our workflow with similar ML-IP studies is discussed and has identified areas for future improvement.

本文言語English
論文番号3891
ジャーナルNanomaterials
12
21
DOI
出版ステータスPublished - 2022 11月
外部発表はい

ASJC Scopus subject areas

  • 化学工学(全般)
  • 材料科学(全般)

フィンガープリント

「Evaluation of Machine Learning Interatomic Potentials for the Properties of Gold Nanoparticles」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル