Event-to-event intensification of the hydrologic cycle from 1.5 °C to a 2 °C warmer world

Gavin D. Madakumbura, Hyungjun Kim, Nobuyuki Utsumi, Hideo Shiogama, Erich M. Fischer, Øyvind Seland, John F. Scinocca, Daniel M. Mitchell, Yukiko Hirabayashi, Taikan Oki

研究成果: Article

6 引用 (Scopus)

抜粋

The Paris agreement was adopted to hold the global average temperature increase to well below 2 °C and pursue efforts to limit it to 1.5 °C. Here, we investigate the event-to-event hydroclimatic intensity, where an event is a pair of adjacent wet and dry spells, under future warming scenarios. According to a set of targeted multi-model large ensemble experiments, event-wise intensification will significantly increase globally for an additional 0.5 °C warming beyond 1.5 °C. In high latitudinal regions of the North American continent and Eurasia, this intensification is likely to involve overwhelming increases in wet spell intensity. Western and Eastern North America will likely experience more intense wet spells with negligible changes of dry spells. For the Mediterranean region, enhancement of dry spells seems to be dominating compared to the decrease in wet spell strength, and this will lead to an overall event-wise intensification. Furthermore, the extreme intensification could be 10 times stronger than the mean intensification. The high damage potential of such drastic changes between flood and drought conditions poses a major challenge to adaptation, and the findings suggest that risks could be substantially reduced by achieving a 1.5 °C target.

元の言語English
記事番号3483
ジャーナルScientific Reports
9
発行部数1
DOI
出版物ステータスPublished - 2019 12 1

ASJC Scopus subject areas

  • General

フィンガープリント Event-to-event intensification of the hydrologic cycle from 1.5 °C to a 2 °C warmer world' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Madakumbura, G. D., Kim, H., Utsumi, N., Shiogama, H., Fischer, E. M., Seland, Ø., Scinocca, J. F., Mitchell, D. M., Hirabayashi, Y., & Oki, T. (2019). Event-to-event intensification of the hydrologic cycle from 1.5 °C to a 2 °C warmer world. Scientific Reports, 9(1), [3483]. https://doi.org/10.1038/s41598-019-39936-2