Experimental modeling of pressure in the hydrostatic formation of a cylindrical cup with different materials

Trung Kien Le, Thi Thu Nguyen, Ngoc Tam Bui

研究成果: Article査読

抄録

Forming complex sheet products using hydrostatic forming technology is currently a focus of the majority of forming processes. However, in order to increase stability during the forming process, it is necessary to identify and analyze the dependency of the forming pressure and the quality of a product on input parameters. For the purpose of modeling the forming pressure, this paper presents empirical research on the product of a cylindrical cup made of various materials, including carbon steel (DC04), copper (CDA260), and stainless steel (SUS 304) with different thicknesses (0.8 mm, 1.0 mm, and 1.2 mm), under a defined range of binder pressures. The regression method is selected to formulate an equation that shows the relationship between the input parameters, including the materials (ultimate strength and yield stress), workpiece thickness, binder pressure and the output parameter, and the formation of fluid pressure. The mathematical equation allows us to determine the extent of the effect of each input on the forming pressure. The experimental results can be used for the easier planning and forecasting of the process and product quality in hydrostatic forming.

本文言語English
論文番号5814
ジャーナルApplied Sciences (Switzerland)
11
13
DOI
出版ステータスPublished - 2021 7月 1

ASJC Scopus subject areas

  • 材料科学(全般)
  • 器械工学
  • 工学(全般)
  • プロセス化学およびプロセス工学
  • コンピュータ サイエンスの応用
  • 流体および伝熱

フィンガープリント

「Experimental modeling of pressure in the hydrostatic formation of a cylindrical cup with different materials」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル