Fast lane boundary recognition by a parallel image processor

Chinthaka Premachandra, Ryo Gohara, Kiyotaka Kato

研究成果: Conference contribution

2 引用 (Scopus)

抜粋

Much past research related to road domain detection has focused on lane detection. Commonly, this is performed by applying edge detection to a road image, then applying a Hough transform to perform straight-line detection. Detected straight lines are then analyzed to extract lane boundaries. However, the Hough transform is calculation intensive, requiring long processing times. This paper applies a parallel processor to image detection and investigates a Hough transform suited to parallel processing to realize faster lane detection.

元の言語English
ホスト出版物のタイトル2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2016 - Conference Proceedings
出版者Institute of Electrical and Electronics Engineers Inc.
ページ947-952
ページ数6
ISBN(電子版)9781509018970
DOI
出版物ステータスPublished - 2017 2 6
イベント2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2016 - Budapest, Hungary
継続期間: 2016 10 92016 10 12

出版物シリーズ

名前2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2016 - Conference Proceedings

Other

Other2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2016
Hungary
Budapest
期間16/10/916/10/12

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Artificial Intelligence
  • Control and Optimization
  • Human-Computer Interaction

フィンガープリント Fast lane boundary recognition by a parallel image processor' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Premachandra, C., Gohara, R., & Kato, K. (2017). Fast lane boundary recognition by a parallel image processor. : 2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2016 - Conference Proceedings (pp. 947-952). [7844363] (2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2016 - Conference Proceedings). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/SMC.2016.7844363