Feature-Selection Based Data Prioritization in Mobile Traffic Prediction Using Machine Learning

Yoshinobu Yamada, Ryoichi Shinkuma, Takehiro Sato, Eiji Oki

研究成果: Conference contribution

6 被引用数 (Scopus)

抄録

Recently, the demand for realtime and accurate prediction of mobile traffic has been growing in traffic engineering and dynamic resource allocation that work to handle increased mobile data traffic. However, most conventional prediction techniques assumed that traffic logs at every unit time at every base station are perfectly available. This assumption is critical in realtime mobile traffic prediction because the volume of traffic log data collected at base stations is huge and they compete bandwidth with normal user application traffic when they are sent from base stations to the server that performs prediction. Therefore, in realtime mobile traffic prediction, we should consider the condition in which the bandwidth ensured for forwarding traffic log data is limited. In this paper, we propose a method that prioritizes traffic log data in the basis of the contribution to prediction accuracy; each base station sends more important traffic log data to the server with higher priority. The importance of each data entry of traffic log data means how much prediction accuracy would degrade if the entry is missing. The proposed method enables us to reduce the volume of traffic log data sent from base stations to the server while maintaining prediction accuracy at the sufficient level. Our simulation study using a real dataset of mobile-traffic measurement validates our method in terms of prediction accuracy under the limitation of available traffic log data.

本文言語English
ホスト出版物のタイトル2018 IEEE Global Communications Conference, GLOBECOM 2018 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781538647271
DOI
出版ステータスPublished - 2018
外部発表はい
イベント2018 IEEE Global Communications Conference, GLOBECOM 2018 - Abu Dhabi, United Arab Emirates
継続期間: 2018 12 92018 12 13

出版物シリーズ

名前2018 IEEE Global Communications Conference, GLOBECOM 2018 - Proceedings

Conference

Conference2018 IEEE Global Communications Conference, GLOBECOM 2018
国/地域United Arab Emirates
CityAbu Dhabi
Period18/12/918/12/13

ASJC Scopus subject areas

  • 情報システムおよび情報管理
  • 再生可能エネルギー、持続可能性、環境
  • 安全性、リスク、信頼性、品質管理
  • 信号処理
  • モデリングとシミュレーション
  • 器械工学
  • コンピュータ ネットワークおよび通信

フィンガープリント

「Feature-Selection Based Data Prioritization in Mobile Traffic Prediction Using Machine Learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル