Fine-grained run-tume power gating through co-optimization of circuit, architecture, and system software design

Hiroshi Nakamura, Weihan Wang, Yuya Ohta, Kimiyoshi Usami, Hideharu Amano, Masaaki Kondo, Mitaro Namiki

研究成果: Article

抜粋

Power consumption has recently emerged as a first class design constraint in system LSI designs. Specially, leakage power has occupied a large part of the total power consumption. Therefore, reduction of leakage power is indispensable for efficient design of high-performance system LSIs. Since 2006, we have carried out a research project called "Innovative Power Control for Ultra Low-Power and High-Performance System LSIs", supported by Japan Science and Technology Agency as a CREST research program. One of the major objectives of this project is reducing the leakage power consumption of system LSIs by innovative power control through tight cooperation and co-optimization of circuit technology, architecture, and system software designs. In this project, we focused on power gating as a circuit technique for reducing leakage power. Temporal granularity is one of the most important issue in power gating. Thus, we have developed a series of Geysers as proof-of-concept CPUs which provide several mechanisms of fine-grained run-time power gating. In this paper, we describe their concept and design, and explain why co-optimization of different design layers are important. Then, three kinds of power gating implementations and their evaluation are presented from the view point of power saving and temporal granularity.

元の言語English
ページ(範囲)404-412
ページ数9
ジャーナルIEICE Transactions on Electronics
E96-C
発行部数4
DOI
出版物ステータスPublished - 2013 4

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

フィンガープリント Fine-grained run-tume power gating through co-optimization of circuit, architecture, and system software design' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用