Finite-size scaling analysis of pseudocritical region in two-dimensional continuous-spin systems

研究成果: Article査読

8 被引用数 (Scopus)

抄録

At low temperatures, the two-dimensional continuous-spin systems exhibit large correlation lengths. Some of them show the Berezinskii-Kosterlitz-Thouless-like transitions, and some others show pseudocritical behaviors for which correlation lengths are extremely large but finite. To distinguish pseudo and genuine critical behaviors, it is important to understand the nature of spin-spin correlations and topological defects at low temperatures in continuous-spin systems. In this paper, I develop a finite-size scaling analysis which is suitable for distinguishing the critical behavior and its applications to the two-dimensional XY, Heisenberg, and RP2 models.

本文言語English
論文番号032109
ジャーナルPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
90
3
DOI
出版ステータスPublished - 2014 9 10

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Finite-size scaling analysis of pseudocritical region in two-dimensional continuous-spin systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル